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ABSTRACT: A palladium-catalyzed method for the
preparation of sulfonamides is described. The process
exhibits significant functional group tolerance and allows
for the preparation of a number of arylsulfonyl chlorides
and sulfonamides under mild conditions.

The medical significance of aryl sulfonamides can be traced
to the 1930s, with the discovery and development of the

first commercially available antibiotics, the so-called sulfa
drugs.1 Today, the presence of sulfonamides in medicinal agents
is widespread; close to 10% of the top 100 pharmaceuticals
prescribed in 2011 either bear a sulfonamide subunit or are
coadministered with a sulfonamide-containing drug.2 In general,
aryl sulfonamides can be prepared by the straightforward reaction
of a sulfonyl chloride with an amine.3 However, the difficulties
associated with sulfonamide synthesis stem not from the
amination reaction, but rather from the preparation of sulfonyl
chlorides themselves. Two types of processes represent the current
state of the art in arylsulfonyl chloride synthesis: (1) electrophilic
aromatic substitution (EAS) with chlorosulfonic acid4 and (2)
oxidative chlorination of organosulfur compounds.5−9 The use of
both approaches suffers from significant limitations. In particular,
the acidic conditions required for EAS processes (and most
oxidative chlorination methods) impose severe restrictions on
substrate scope. Furthermore, desired substitution patterns may
be inaccessible via EAS because the regioselectivity is dictated by
the intrinsic properties of the parent arene. Traditionally, oxidative
chlorination involves the use of hazardous reagents (e.g., aqueous
chlorine)6 or strong chlorinating agents (e.g., SOCl2

7 and SO2Cl2).
8

Although milder conditions have been reported,9 oxidative
chlorination of thiophenol derivatives ultimately requires prior
formation of a carbon−sulfur bond.10,11
In principle, a transition metal catalyst could obviate the need

for such reagents and permit the convergent synthesis of
sulfonamide analogues, allowing variation of both sulfonyl
(−SO2−) substituents. Unfortunately, success in this area of
catalysis is limited to a single Pd-catalyzed aminosulfonylation
process, initially reported by Willis in 2010, to prepare N-amino-
sulfonamides (1) from aryl iodides and hydrazines (eq 1).12 While
this example represents an important achievement in sulfonylation
chemistry, amine nucleophiles remain incompatible with these
types of couplings.12,13 To address this limitation, we devised an
alternative strategy (eq 2), which involves oxidative addition of
LPd(0) to an electrophile of the type X−SO2−X′ (A), where X
and X′ represent leaving groups of different reactivity. Subsequent
coupling with an organometallic nucleophile would afford

electrophilic species B, which, in turn, would serve as a direct
precursor to the sulfonamide product (C).

Early in the investigation, we selected arylboronic acids as
coupling partners because of their compatibility with other
functional groups, ready availability, and ease of handling. Upon
examining the reaction sequence from a retrosynthetic perspective,
we envisioned exploiting arylsulfonate esters (3, Scheme 1)14 as
the immediate precursors to sulfonamides, and thus potential
targets for Suzuki−Miyaura cross-coupling. In turn, we proposed
that sulfonate esters (3) could be prepared from an aryl
chlorosulfate derivative (2)15 via Pd-catalysis. However, contrary
to our expectations, we discovered serendipitously that this
coupling process generates arylsulfonyl chlorides (4) in preference
to 3, and we describe herein the development and scope of a Pd-
catalyzed chlorosulfonylation reaction.

Initial experiments focused on identifying conditions to prepare
3a from the simplest aryl chlorosulfate, phenyl chlorosulfate (2a,
Table 1), which is an easy to prepare, easily handled liquid.16

Results from a preliminary survey of bases are outlined in Table 1,
utilizing 4-methoxyphenylboronic acid in combination with a
catalyst derived from Pd(OAc)2 and tert-BuBrettPhos (L8) or
DavePhos (L1). Unexpectedly, we observed mixtures of 3a and
the corresponding sulfonyl chloride (4a) when excess oxygen
base was used (entries 1−3). More importantly, we discovered
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Scheme 1. Sulfonylation of Arylboronic Acids
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that 4a could be formed exclusively in the absence of base
(entries 4 and 5), and that neither product is formed in the
absence of Pd or phosphine ligand.17 Additional control
experiments verified that aryl sulfonate esters (3) are not
converted to the corresponding sulfonyl chlorides (4) under the
reaction conditions;18 conversely, ester 3a is generated when crude
reaction mixtures of 4a are treated with excess K3PO4 or K2CO3
(following complete consumption of 2a in the absence of base).
The above results suggest a catalytic cycle in which Pd(0)

inserts into the SO2−OPh bond of 2a in preference to the
SO2−Cl bond (Figure 1).19 The phenoxy substituent of the
resulting Pd-sulfinate complex (6) would be expected to
facilitate transmetalation without the aid of an oxygen base;20

subsequent reductive elimination from 7 would yield 4 and
regenerate the active Pd(0) catalyst. Oxygen bases likely
promote the release of phenoxide, which in turn would react
with the sulfonyl chloride to provide 3. Examination of the
chemical literature revealed that Buncel and co-workers have
also observed the displacement of aryloxide from aryl
chlorosulfate derivatives (2), but in the context of direct
nucleophilic additions.15,21 Nonetheless, this precedent dem-
onstrates the lability of the SO2−OPh bond, as we have observed
for the transfer of −SO2Cl in the analogous Pd-catalyzed process.

In light of these results, we focused our efforts on the
preparation of sulfonyl chlorides as they represent ideal
precursors to sulfonamides. However, the system represented
in Table 1, entry 5 proved ineffective for both electron-deficient
and ortho-substituted substrates. For example, subjecting 2-
methoxyphenylboronic acid to these conditions resulted in near
complete recovery of phenyl chlorosulfate (2a). Further
optimization revealed that yields of arylsulfonyl chlorides could be
increased by employing anhydrous acetone as solvent in
combination with a catalytic amount of Na2CO3 (5 mol %).

Although Pd(OAc)2 proved to be a competent palladium source,
the use of palladacyclic precatalysts22 (P1−P7) allowed for these
experiments to be conducted at lower temperatures. As exemplified
in the coupling of 2a with 2-methoxyphenylboronic acid (Figure 2),
precatalysts based on diphenyl- (L3 and L5) and di-tert-butylbiaryl
phosphine ligands (L2 and L7) proved to be the most effective. In
particular, the PhCPhos precatalyst (P5) afforded 4b in the highest
yield (82%), albeit with only a slight improvement over that derived
from tert-BuDavePhos, L2 (80%). In contrast, the use of XPhos
(L6),23 previously reported to be an excellent ligand for Suzuki−
Miyaura reactions, provided little product.24

With this improved protocol, utilizing 2 mol % P5 and 5 mol %
of Na2CO3 in acetone, we prepared and isolated a number of
sulfonyl chlorides in good yields (Table 2). In general, electron-
rich, -neutral and -deficient arylboronic acid reagents represent
compatible substrates. Couplings with electron-rich substrates
can be conducted at 50 °C, while reactions with electron-
deficient substrates are typically slower and require higher
temperatures.25,26 While most of the sulfonyl chlorides are
stable to chromatography, electron-deficient compounds, such
as 4h and 4j, were found to decompose to varying degrees
upon attempted purification.27 Thus to circumvent this
problem, the sulfonyl chloride intermediates were converted
to sulfonamides (5a−m) directly by simply adding a primary or
secondary amine to the crude reaction mixtures of 4 (Table 3).28

Weakly nucleophilic aniline derivatives may also be incorporated
into the sulfonamide moiety, but pyridine is required to facilitate
amination in these cases. As illustrated in Tables 2 and 3, the
chlorosulfonylation reaction tolerates chloro-, bromo-, and iodo-
substituted arylboronic acids as well as substrates containing
TBS-ethers, ester and acetyl functional groups. Heteroaryl
substrates, such as 3-thiophene and 2-dibenzofuran boronic
acid, also represent suitable coupling partners.29

Table 1. Pd-Catalyzed Chlorosulfonylationa

entry ligand base 3a (%)b 4a (%)b

1 L8 K3PO4 31 4
2 L8 K2CO3 15 22
3 L8 Na2CO3 4 36
4 L8 none 0 59
5 L1 none 0 87

aPerformed on a 0.5 mmol scale with respect to 2a. bGC yields.

Figure 1. Proposed catalytic cycle.

Figure 2. Ligand effects.
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Several additional features of this chemistry are noteworthy.
First, Pd(0) reacts with phenyl chlorosulfate (2a) in preference
to aryl iodide groups bearing electron-withdrawing sulfonyl
groups para to the iodo-substituents (e.g., 4e and 5i). Second,
while others have demonstrated that arylsulfonyl chlorides

themselves are efficient cross-coupling partners for various Pd-
catalyzed processes,30−32 these intermediates are essentially
unreactive under the chlorosulfonylation conditions. Third,
palladium typically catalyzes the desulfonylation of arylsulfonyl
chlorides; as a result, these substrates (4) are often used as aryl
halide equivalents for carbon−carbon bond-forming pro-
cesses.32 In contrast, the Pd-catalyst derived from L5 promotes
carbon−sulfur bond formation, thus enabling the installation of
a sulfonyl chloride (−SO2Cl) functional group.

33 Finally, regarding
the oxidative addition step, we surmised that the sp3 oxygen atom
of 2a might direct the insertion of Pd(0) into the proximal PhO−
SO2 bond; however, results from a competition experiment
between 2b and the bulkier 2c (eq 3) revealed that 2c is slightly
more reactive than 2b (ratio of recovered 2b/2c = 1.7:1).34

Moreover, this counterintuitive trend in reactivity is not specific to
Pd-catalysis. For example, reacting a 1:1 mixture of 2b and 2c with
piperidine (eq 4) resulted in a comparable ratio of recovered 2b/
2c (1.6:1) along with formation of the sulfamoyl chloride (8)
derived from piperidine. To explain the displacement of phenoxide
from noncatalyzed nucleophilic additions to 2, Buncel has invoked
an SN2 mechanism in which elongation of the S−O bond relieves
considerable strain in the bipyramidal transition state; according to
the authors, such relief of strain would not accompany partial
rupture of the S−Cl bond.21 In this regard, increasing the size of
the aryloxy substituent of 2 may intensify this stereoelectronic
effect and further weaken the S−O bond.

In summary, we demonstrated that phenyl chlorosulfate (2a)
represents an excellent [SO2Cl]

+ synthon in the context of Pd-
catalyzed Suzuki−Miyaura cross-coupling. The chlorosulfonyla-
tion reaction exhibits considerable functional group tolerance
and the transformation is inherently regioselective; the
substitution patterns of many of the products shown (such as
4h−4j) cannot be accessed by EAS processes. Furthermore, the
sulfonyl chloride intermediates can be derivatized in situ and
isolated as the corresponding sulfonamides. Therefore, both the
aryl and amine components of arylsulfonamides can be installed
in a single synthetic operation from readily available reagents.
Investigations aimed at broadening the scope of this trans-
formation and further delineating the mechanism of sulfur−
oxygen bond scission are currently in progress.
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Table 2. Chlorosulfonylation of Boronic Acidsa

aYields represent isolated yields (average of two runs): 2a (1 mmol),
ArB(OH)2 (1.5 mmol), Na2CO3 (5 mol %), P5 (2 mol %), degassed,
anhydrous acetone (2 mL), 50−70 °C, 12 h.

Table 3. Preparation of Sulfonamides

aIsolated yields (average of two runs). Step 1: See conditions in Table
2. bP4 (2 mol %) was used. cStep 2: R2NH (2.2 mmol), rt, 1.5 h. d1-
Methylpiperazine (1.2 equiv) and DIPEA (2.0 equiv) were used.
eRNH2 (3.0 equiv), rt, 1.5 h.

fArNH2 (1.2 equiv), pyridine (3.0 equiv),
rt, 5 h.
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